Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Meat Sci ; 209: 109401, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38061305

RESUMO

The study investigated the antioxidant effect on lipid and protein oxidation, microbial count and other physicochemical attributes of meat patties packaged in flaxseed gum (FSG) based films added with betel leaf extract (BLE) during refrigerated storage (4 ± 1 °C) of 30 days. FSG films were developed after incorporating 0, 2.5, 5, 7.5 and 10% of BLE (BLE0, BLE1, BLE2, BLE3 and BLE4) respectively. The patties showed no change in pH due to composite films however, a remarkable effect in retarding the weight loss and color change along with an improvement in sensory score and microbial quality. TBARS of the patties packed in treated films ranged from 0.10 to 0.99 (mg MDA/kg), lower than that of the control 0.34-1.33 (mg MDA/kg). The BLE4 (packed in FSG film with 10% BLE) had the lowest metmyoglobin content of 31.71% compared to the control sample (69.02%) on 30th day of refrigerated storage. Further, a significant reduction in moisture and color change was observed in meat patties packed in FSG-BLE composite films compared to the control patties. Hence, this study concluded that the FSG-BLE composite films improves the storage stability by impeding the rate of lipid oxidation indicating the developed film's promising potential as a sustainable material in active packaging for the shelf life extension of high-fat meat products and other perishable food products.


Assuntos
Linho , Carne/análise , Estresse Oxidativo , Extratos Vegetais , Lipídeos/química
2.
Diagn Microbiol Infect Dis ; 108(1): 116109, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37918188

RESUMO

Staphylococcus epidermidis is an opportunistic bacterial pathogen. The study screened isolates of S. epidermidis of pediatric origin for genetic markers of discriminatory potential. 103 isolates (n = 75 clinical; n = 28 community) were screened for methicillin resistance (mecA), formate dehydrogenase (fdh) and an array of virulence factors through multiplex PCR and Congo red assay. The isolates were typed in four distinct categories, based on the presence of selected virulent factors. The type A clinical isolates carrying icaADBC operon (n = 22; 29.3%, P = 0.117) were not significantly differentiating the origin of isolates. The type B clinical isolates representing methicillin resistant S. epidermidis (MRSE) (n = 73; 97.3%, P < 0.00001) and the type C clinical isolates lacking formate dehydrogenase fdh (n = 62; 82.6%, P < 0.00001) were having significant discriminatory potential of clinical isolates, respectively. All type D community isolates were carrying fdh (n = 28; 100%, P < 0.00001). MecA and fdh are significant differential markers of pathogenicity and commensalism in S. epidermidis of pediatric origin.


Assuntos
Infecções Estafilocócicas , Staphylococcus epidermidis , Criança , Humanos , Staphylococcus epidermidis/genética , Formiato Desidrogenases , Virulência/genética , Infecções Estafilocócicas/microbiologia , Paquistão , Simbiose , Antibacterianos , Proteínas de Bactérias/genética
3.
ACS Omega ; 8(48): 46165-46181, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38075833

RESUMO

The search for novel drug scaffolds that can improve effectiveness and safety through drug conjugates is a promising approach. Consequently, drug conjugates constitute a dynamic field of study and advancement within medicinal chemistry. This research demonstrates the conjugation of diclofenac and mefenamic acid with sulfa drugs and their screening for urease inhibition. These conjugates' structural confirmation was performed using elemental analysis and spectroscopic methods, including IR, 1H NMR, and 13C NMR. Diclofenac conjugated with sulfanilamide (4), sulfacetamide (10), and mefenamic acid conjugated with sulfanilamide (12), and sulfamethoxazole (17) was found potent and demonstrated urease inhibition competitively, with IC50 (µM) values 3.59 ± 0.07, 5.49 ± 0.34, 7.92 ± 0.27, and 8.35 ± 0.26, respectively. Diclofenac conjugated with sulfathiazole (6), sulfamerazine (8), and sulfaguanidine (11), while mefenamic acid conjugated with sulfisoxazole (13), sulfathiazole (14), and sulfadiazine (15) exhibited a mixed mode of urease inhibition. The IC50 (µM) values were 16.19 ± 0.21, 9.50 ± 0.28, 4.35 ± 0.23, 15.86 ± 0.25, 14.80 ± 0.27, and 7.92 ± 0.27, respectively. Furthermore, molecular docking studies were employed to predict the binding pose of competitive inhibitors at the urease active site. These conjugates generated stable complexes with the urease protein observed through molecular dynamics (MD) simulations, where no conformational changes occurred throughout the simulations. These results highlight the potential for approved therapeutic molecule conjugates to give rise to new categories of pharmacological agents for urease inhibition. The structural similarity of sulfonamides with urea allows them to compete with urea for binding to the active site of the urease enzyme. Sulfonamides and nonsteroidal anti-inflammatory drugs (NSAIDs) can interact hydrophobically with the active site of the urease enzyme, which may disturb its structure and catalytic activity. Therefore, these conjugates may be helpful in the development of novel pharmacological agents for the treatment of a variety of illnesses in which the urease enzyme is involved.

4.
Front Chem ; 11: 1206380, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601915

RESUMO

Derivative synthesis has been a crucial method for altering the effects of already-approved medications, especially to lessen adverse effects and enhance results. Making use of this multi-target approach, a series of naproxen-sulfa drug conjugates was designed and synthesized. The newly designed conjugates were confirmed by spectroscopic techniques like IR, 1HNMR, 13CNMR, and elemental analysis. The conjugates were screened for anti-inflammatory, urease, and cyclooxygenase-2 (COX-2) inhibition. Naproxen conjugated with sulfanilamide, sulfathiazole, and sulfaguanidine was found potent and showed a competitive mode of urease inhibition, with IC50 (µM) values 6.69 ± 0.11, 5.82 ± 0.28, 5.06 ± 0.29, respectively. When compared to other screened conjugates, the naproxen-sulfamethoxazole conjugation showed better anti-inflammatory action by inhibiting induced edema by 82.8%, which is comparable to the medication indomethacin (86.8% inhibition). Whereas it exhibited 75.4% inhibition of COX-2 at 10 µM concentration which is comparable with the reference drug (celecoxib, 77.1% inhibition). Moreover, the binding modes of competitive inhibitors with the urease and COX-2 receptor were predicted through molecular docking studies and their stability analysis through MD simulations showed that these compounds made stable complexes with the respective targets and there were no conformational changes that occurred during simulation. The obtained results showed that the conjugates of approved therapeutic molecules may lead to the development of novel types of pharmacological agents in the treatment of several pathological disorders where urease and COX-2 enzymes are involved.

5.
J Biomol Struct Dyn ; : 1-15, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37643014

RESUMO

To explore the new mode of action and reduce side effects, making conjugates of existing drugs is becoming an attractive tool in the realm of medicinal chemistry. In this work, we exploited this approach and synthesized new conjugates to assess their activities against the enzymes involved in different pathological conditions. Specifically, we design and synthesized conjugates involving acetylsalicylic acid and sulfa drugs, validating the newly crafted conjugates using techniques like IR, 1HNMR, 13CNMR, and elemental analysis. These conjugates underwent assessment for their ability to inhibit cyclooxygenase-2 (COX-2), urease enzymes, and their anti-inflammatory potential. A competitive mode of urease inhibition was observed for acetylsalicylic acid conjugated with sulfanilamide, sulfacetamide, and sulfadiazine with IC50 of 2.49 ± 0.35 µM, 6.21 ± 0.28 µM, and 6.57 ± 0.44 µM, respectively. Remarkably, the acetylsalicylic acid-sulfamethoxazole conjugate exhibited exceptional anti-inflammatory activity, effectively curtailing induced edema by 83.7%, a result akin to the reference anti-inflammatory drug indomethacin's performance (86.8%). Additionally, it demonstrated comparable COX-2 inhibition (75.8%) to the reference selective COX-2 inhibitor celecoxib that exhibited 77.1% inhibition at 10 µM concentration. To deepen our understanding, we employed molecular docking techniques to predict the binding interactions of competitive inhibitors with COX-2 and urease receptors. Additionally, MD simulations were carried out, confirming the stability of inhibitor-target complexes throughout the simulation period, devoid of significant conformational changes. Collectively, our research underscores the potential of coupling approved medicinal compounds to usher in novel categories of pharmacological agents, holding promise for addressing a wide spectrum of pathological disorders involving COX-2 and urease enzymes.Communicated by Ramaswamy H. Sarma.

6.
Molecules ; 28(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37513261

RESUMO

The development of novel scaffolds that can increase the effectiveness, safety, and convenience of medication therapy using drug conjugates is a promising strategy. As a result, drug conjugates are an active area of research and development in medicinal chemistry. This research demonstrates acetamide-sulfonamide scaffold preparation after conjugation of ibuprofen and flurbiprofen with sulfa drugs, and these scaffolds were then screened for urease inhibition. The newly designed conjugates were confirmed by spectroscopic techniques such as IR, 1HNMR, 13CNMR, and elemental analysis. Ibuprofen conjugated with sulfathiazole, flurbiprofen conjugated with sulfadiazine, and sulfamethoxazole were found to be potent and demonstrated a competitive mode of urease inhibition, with IC50 (µM) values of 9.95 ± 0.14, 16.74 ± 0.23, and 13.39 ± 0.11, respectively, and urease inhibition of 90.6, 84.1, and 86.1% respectively. Ibuprofen conjugated with sulfanilamide, sulfamerazine, and sulfacetamide, whereas flurbiprofen conjugated with sulfamerazine, and sulfacetamide exhibited a mixed mode of urease inhibition. Moreover, through molecular docking experiments, the urease receptor-binding mechanisms of competitive inhibitors were anticipated, and stability analysis through MD simulations showed that these compounds made stable complexes with the respective targets and that no conformational changes occurred during the simulation. The findings demonstrate that conjugates of approved therapeutic molecules may result in the development of novel classes of pharmacological agents for the treatment of various pathological conditions involving the urease enzyme.


Assuntos
Flurbiprofeno , Simulação de Acoplamento Molecular , Flurbiprofeno/farmacologia , Ibuprofeno/farmacologia , Inibidores Enzimáticos/farmacologia , Sulfacetamida , Cinética , Urease , Sulfamerazina , Canavalia , Relação Estrutura-Atividade , Sulfanilamida , Sulfonamidas/farmacologia , Estrutura Molecular
7.
Children (Basel) ; 10(6)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37371318

RESUMO

OBJECTIVES: This study aimed to estimate the prevalence of Giardia lamblia infection and identify associated risk factors at both individual and community levels in a pediatric population in different agroecological zones of Khyber Pakhtunkhwa, Pakistan. METHODS: A community-based cross-sectional study was conducted from March to December 2022. Using stratified sampling, 1026 households were recruited from nine agroecological zones. Stool samples were collected from 1026 children up to the age of five years and processed for detection of Giardia using a commercial ELISA kit. Data on potential risk factors were collected using a pre-structured questionnaire. A multivariable logistic regression model was used to identify risk factors associated with giardiasis. RESULTS: The study found that the prevalence of giardiasis in the study area was 3.31%. Children aged 13-24 months were found to be at higher risk for giardiasis. Illiterate mothers and fathers attending daycare institutions/kindergartens, mothers not practicing hand washing during critical times, households with companion animals, and homes where stray dogs/cats enter were identified as predictors of giardiasis at the individual level. Children living in sub-mountain valleys use un-piped water, inadequate domestic water storage vessels, drink un-boiled or unfiltered water, live near rubbish heaps or un-paved streets/pathways, and have unimproved latrine facilities were identified as risk factors of giardiasis at the community level. CONCLUSIONS: The study highlights the need for integrated intervention approaches at both individual and community levels to reduce the incidence of giardiasis in Khyber Pakhtunkhwa, Pakistan. Interventions aimed at promoting behavioral change and providing safe and adequate water sources, combined with individual-level interventions such as hand washing and awareness of giardiasis prevention methods, would be critical to addressing this health concern. Inter-sectoral collaboration between the health sector and other sectors would also be necessary to achieve meaningful progress in reducing the incidence of giardiasis in resource-limited areas.

8.
Int J Biol Macromol ; 245: 125562, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37379948

RESUMO

There has been a shift from use of petroleum-based plastics, causing serious environmental pollution, towards innovative and biodegradable edible packaging. The present study documents the development of composite edible films based on the flaxseed gum (FSG) modified by the incorporation of betel leaf extract (BLE). The films were assessed for physicochemical, mechanical, morphological, thermal, antimicrobial and structural characteristics. Scanning electron microscopy images indicated that the roughness decreased with an increase in BLE concentration. The water vapor permeability of the FSG-BLE films ranged from 4.68 to 1.59 × 10-9 g s- 1 m- 2 Pa- 1, lower than that of the control sample (6.77 × 10-9 g s- 1 m- 2 Pa- 1). The BLE4 (containing 10 % BLE) films had the highest tensile strength of 32.46 MPa compared to the control sample (21.23 MPa). Similarly, EAB and seal strength of the films incorporated with BLE were ameliorated. X-ray diffraction pattern and FTIR illustrated the shift of amorphous to crystalline behavior and a significant interaction among the BLE and FSG functional groups. Furthermore, the thermal stability of the treated films was not affected significantly however, they showed improved antimicrobial activity with the highest diameter of inhibition zone in the BLE4 sample. This study concluded that the FSG-BLE composite films (BLE4 in particular) can be considered as novel packaging material for food conservation coupled with a potential to enhance the shelf life of perishable food products.


Assuntos
Anti-Infecciosos , Filmes Comestíveis , Linho , Piper betle , Linho/química , Embalagem de Alimentos/métodos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Permeabilidade , Extratos Vegetais/farmacologia , Extratos Vegetais/química
9.
PeerJ ; 11: e14977, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36890873

RESUMO

Background: Every year, the food business produces a sizeable amount of waste, including the portions of fruits and vegetables that are inedible, and those that have reached a stage where they are no longer suitable for human consumption. These by-products comprise of components such as natural antioxidants (polyphenols, carotenoid etc.), dietary fiber, and other trace elements, which can provide functionality to food. Due to changing lifestyles, there is an increased demand for ready-to-eat products like sausages, salami, and meat patties. In this line, meat products like buffalo meat sausages and patties are also gaining the interest of consumers because of their rich taste. Meat, however, has a high percentage of fat and is totally deprived of dietary fiber, which poses severe health problems like cardiovascular (CV) and gastrointestinal diseases. The health-conscious consumer is becoming increasingly aware of the importance of balancing flavor and nutrition. Therefore, to overcome this problem, several fruit and vegetable wastes from their respective industries can be successfully incorporated into meat products that provide dietary fiber and play the role of natural antioxidants; this will slow down lipid oxidation and increase the shelf-life of meat products. Methodology: Extensive literature searches have been performed using various scientific search engines. We collected relevant and informative data from subject-specific and recent literature on sustainable food processing of wasted food products. We also looked into the various applications of waste fruit and vegetable products, including cereals, when they are incorporated into meat and meat products. All relevant searches meeting the criteria were included in this review, and exclusion criteria were also set. Results: The pomace and peels of fruits like grapes, pomegranates, cauliflower, sweet lime, and other citrus are some of the most commonly used fruit and vegetable by-products. These vegetable by-products help inhibit oxidation (of both lipids and proteins) and the growth of pathogenic and spoilage bacteria, all without altering the consumer's acceptability of the product on a sensory level. When included in meat products, these by-products have the potential to improve the overall product quality and lengthen its shelf-life under certain circumstances. Conclusion: Cost-effective and easily accessible by-products from the fruit and vegetable processing industries can be used in meat products to enhance their quality features (physicochemical, microbial, sensory, and textural aspects) and health benefits. Additionally, this will provides environmental food sustainability by lowering waste disposal and improving the food's functional efficacy.


Assuntos
Produtos da Carne , Verduras , Humanos , Frutas/química , Carne/análise , Antioxidantes/análise , Fibras na Dieta
10.
Meat Sci ; 200: 109157, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36913796

RESUMO

The antioxidant effect of betel leaf extract (BLE) on lipid and protein oxidation, microbial count and physicochemical attributes was investigated in meat sausages during refrigerated storage at 4 ± 1 °C. Buffalo meat sausages were developed after incorporating 0, 250, 500 and 750 mg kg-1 of BLE (BLE0, BLE1, BLE2 and BLE3) respectively. The sausages showed no changes in proximate composition due to BLE inclusion, but there was an improvement in microbial quality, color score, textural properties and lipid and protein oxidative stability. Further, higher sensory scores were observed for the BLE-incorporated samples. The images from scanning electron microscopy (SEM) revealed a reduction in surface roughness and unevenness showing microstructure modification in BLE treated sausages compared to the control sausages. Hence, to improve the storage stability and impede the rate of lipid oxidation in sausages, BLE incorporation proved to be an effective strategy.


Assuntos
Anti-Infecciosos , Búfalos , Animais , Carne/análise , Lipídeos/química , Extratos Vegetais , Estresse Oxidativo , Compostos Fitoquímicos
11.
Life Sci Space Res (Amst) ; 36: 123-134, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36682821

RESUMO

Food and nutrition have greatly influenced the effectiveness of space exploration missions. With the development of technology, attention is now being paid more and more to preparing food for the microgravity environment, taking into account factors like nutrient density, shelf life, optimized packaging, preservations, innovations, challenges, and applications. The spectrum of food products is designed to meet the balanced nutritional requirements, reduce hazards encountered by astronauts, and utilize space in explorers during space missions. For the long duration of space missions and, consequently, for human permanence in space, it is crucial to provide humans with an adequate supply of fresh food to meet their nutritional needs. By doing this, astronauts could reduce the health risks associated with psychological stress, microgravity, and radiation exposure from space. Maintaining astronauts' health, happiness, and vitality during long-duration human-crewed missions has recently emerged as an essential and critical research area. The food they eat appears to be an important factor. For short-term space missions, astronauts' food could be brought from earth. Still, for long-term space missions to the Moon, Mars, and other distant missions, which are the current research destinations, they must find a way to eat, such as by cultivating plants or finding other means of survival. Scientists and researchers are attempting to develop novel food production technologies or systems that require minimal inputs while maximizing safe, nutritionally balanced, and delicious food outputs for long-duration space missions that could benefit people on earth. This review summarizes various aspects of space food, including evolution, innovations, technological advancements to prolong shelf life, and astronauts' problems. It also involves current research, including space foods like 3D printing and space farming for a long-term space mission.


Assuntos
Voo Espacial , Ausência de Peso , Humanos , Astronautas , Alimentos , Lua
12.
Medicina (Kaunas) ; 58(11)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36363467

RESUMO

Background and Objective: Staphylococcus epidermidis is an opportunistic pathogen from pediatric bacteremia that is commonly isolated. Biofilm is the major virulence factor of S. epidermidis; however, the role of biofilm determinants in biofilm formation is highly contradictory and diverse. The current study aimed to investigate the role of polysaccharide-dependent and polysaccharide-independent pathogenic determinants in biofilm formation under physiological stress conditions. Materials and Methods: The isolates (n = 75) were identified and screened for the icaADBC operon, IS256, and an array of MSCRAMMs (Microbial Surface Component Recognizing Adhesive Matrix Molecules) through PCR analysis. The activity of the icaADBC operon was detected by Congo red assay, and the biofilm formation was analyzed through microtiter plate assay. Results: S. epidermidis isolates produced biofilm (n = 65; 86.6%) frequently. The icaA was the major representative module of the actively expressing icaADBC operon (n = 21; 80.7% sensitivity). The MSCRAMMs, including fbe (n = 59; 90.7%; p = 0.007), and embp (n = 57; 87.6%; p = 0.026), were highly prevalent and associated with biofilm positive S. epidermidis. The prevalence of icaADBC operon in biofilm positive and negative S. epidermidis was not significant (n = 41; 63%; p = 0.429). No significant association was found between IS256 and actively complete icaADBC operon (n = 10; 47.6%; p = 0.294). In the presence of 5% human plasma and glucose stress, S. epidermidis produced a strong biofilm (n = 55; 84.6%). Conclusion: The polysaccharide-dependent biofilm formation is significantly replaced (n = 21; 28%; p = 0.149) by a polysaccharide-independent mechanism (n = 59; 90.7%; p = 0.007), in which the MSCRAMMs might actively play their role. The fibrinogen-binding protein and extracellular matrix-binding protein might be potential anti-biofilm drug targets, markers of rapid diagnosis, and potential vaccine candidates of S. epidermidis involved in pediatric bacteremia.


Assuntos
Bacteriemia , Infecções Estafilocócicas , Humanos , Criança , Staphylococcus epidermidis/genética , Paquistão , Óperon/genética , Biofilmes , Polissacarídeos
13.
Molecules ; 27(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35335144

RESUMO

A targeted delivery system is primarily intended to carry a potent anticancer drug to specific tumor sites within the bodily tissues. In the present study, a carrier system has been designed using folic acid (FA), bis-amine polyethylene glycol (PEG), and an anticancer drug, 5-fluorouracil (5-FU). FA and PEG were joined via an amide bond, and the resulting FA-PEG-NH2 was coupled to 5-FU producing folate-polyethylene glycol conjugated 5-fluorouracil (FA-PEG-5-FU). Spectroscopic techniques (UV-Vis, 1HNMR, FTIR, and HPLC) were used for the characterization of products. Prodrug (FA-PEG-5-FU) was analyzed for drug release profile (in vitro) up to 10 days and compared to a standard anticancer drug (5-FU). Folate conjugate was also analyzed to study its folate receptors (FR) mediated transport and in vitro cytotoxicity assays using HeLa cancer cells/Vero cells, respectively, and antitumor activity in tumor-bearing mice models. Folate conjugate showed steady drug release patterns and improved uptake in the HeLa cancer cells than Vero cells. Folate conjugate treated mice group showed smaller tumor volumes; specifically after the 15th day post-treatment, tumor sizes were decreased significantly compared to the standard drug group (5-FU). Molecular docking findings demonstrated importance of Trp138, Trp140, and Lys136 in the stabilization of flexible loop flanking the active site. The folic acid conjugated probe has shown the potential of targeted drug delivery and sustained release of anticancer drug to tumor lesions with intact antitumor efficacy.


Assuntos
Fluoruracila , Polietilenoglicóis , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Fluoruracila/química , Fluoruracila/farmacologia , Ácido Fólico/química , Humanos , Camundongos , Simulação de Acoplamento Molecular , Polietilenoglicóis/química , Células Vero
14.
Front Genet ; 12: 758665, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950189

RESUMO

The study of A-genome Asian cotton as a potential fiber donor in Gossypium species may offer an enhanced understanding of complex genetics and novel players related to fiber quality traits. Assessment of individual fibers providing classified fiber quality information to the textile industry is Advanced Fiber Information System (AFIS) in the recent technological era. Keeping the scenario, a diverse collection of 215 Asiatic cotton accessions were evaluated across three agro-ecological zones of China. Genome-Wide Association Studies (GWAS) was performed to detect association signals related to 17 AFIS fiber quality traits grouped into four categories viz: NEPs, fiber length, maturity, and fineness. Significant correlations were found within as well as among different categories of various traits related to fiber quality. Fiber fineness has shown a strong correlation to all other categories, whereas these categories are shown interrelationships via fiber-fineness. A total of 7,429 SNPs were found in association with 17 investigated traits, of which 177 were selected as lead SNPs. In the vicinity of these lead SNPs, 56 differentially expressed genes in various tissues/development stages were identified as candidate genes. This compendium connecting trait-SNP-genes may allow further prioritization of genes in GWAS loci to enable mechanistic studies. These identified quantitative trait nucleotides (QTNs) may prove helpful in fiber quality improvement in Asian cotton through marker-assisted breeding as well as in reviving eroded genetic factors of G. hirsutum via introgression breeding.

15.
Front Plant Sci ; 12: 565552, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093598

RESUMO

For about a century, plant breeding has widely exploited the heterosis phenomenon-often considered as hybrid vigor-to increase agricultural productivity. The ensuing F1 hybrids can substantially outperform their progenitors due to heterozygous combinations that mitigate deleterious mutations occurring in each genome. However, only fragmented knowledge is available concerning the underlying genes and processes that foster heterosis. Although cotton is among the highly valued crops, its improvement programs that involve the exploitation of heterosis are still limited in terms of significant accomplishments to make it broadly applicable in different agro-ecological zones. Here, F1 hybrids were derived from mating a diverse Upland Cotton germplasm with commercially valuable cultivars in the Line × Tester fashion and evaluated across multiple environments for 10 measurable traits. These traits were dissected into five different heterosis types and specific combining ability (SCA). Subsequent genome-wide predictions along-with association analyses uncovered a set of 298 highly significant key single nucleotide polymorphisms (SNPs)/Quantitative Trait Nucleotides (QTNs) and 271 heterotic Quantitative Trait Nucleotides (hQTNs) related to agronomic and fiber quality traits. The integration of a genome wide association study with RNA-sequence analysis yielded 275 candidate genes in the vicinity of key SNPs/QTNs. Fiber micronaire (MIC) and lint percentage (LP) had the maximum number of associated genes, i.e., each with 45 related to QTNs/hQTNs. A total of 54 putative candidate genes were identified in association with HETEROSIS of quoted traits. The novel players in the heterosis mechanism highlighted in this study may prove to be scientifically and biologically important for cotton biologists, and for those breeders engaged in cotton fiber and yield improvement programs.

16.
PLoS One ; 16(4): e0249705, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33831094

RESUMO

The energy demand in the world has increased rapidly in the last few decades. This demand is arising the need for alternative energy resources. Solar energy is the most eminent energy resource which is completely free from pollution and fuel. However, the problem occurs when it comes to efficiency under different atmospheric conditions such as varying temperature and solar irradiance. To achieve its maximum efficiency, an algorithm of maximum power point tracking (MPPT) is needed to fetch maximum power from the photovoltaic (PV) system. In this article, a nonlinear backstepping terminal sliding mode control (BTSMC) is proposed for maximum power extraction. The system is finite-time stable and its stability is validated through the Lyapunov function. A DC-DC buck-boost converter is used to deliver PV power to the load. For the proposed controller, reference voltages are generated by a radial basis function neural network (RBF NN). The proposed controller performance is tested using the MATLAB/Simulink tool. Furthermore, the controller performance is compared with the perturb and observe (P&O) MPPT algorithm, Proportional Integral Derivative (PID) controller and backstepping MPPT nonlinear controller. The results validate that the proposed controller offers better tracking and fast convergence in finite time under rapidly varying conditions of the environment.


Assuntos
Fontes de Energia Elétrica , Desenho de Equipamento/métodos , Redes Neurais de Computação , Energia Solar , Algoritmos , Simulação por Computador , Luz Solar , Temperatura
17.
Curr Comput Aided Drug Des ; 17(7): 946-956, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32532195

RESUMO

BACKGROUND: Brucellosis is an economically important zoonotic disease caused by the Gram-negative bacteria belonging to the genus Brucella. Medicinal plants are well known for a wide variety of potential antimicrobial agents that can be used as antimicrobial drugs. METHODS: In the present study, crude ethanolic and methanolic extracts of local plants (Berberis lyceum and Fagonia cretica) were tested in vitro against Brucella melitensis via a well diffusion method for their antibacterial activity. In the in silico study, phytochemicals previously identified in the selected plants were docked with a homology model of the cytotoxic factor malate synthase G (MSG) highly conserved among Brucella spp., in Molecular Operating Environment (MOE) to predict a potential drug against B. melitensis. A molecular dynamic simulation was performed to predict the stability of MSG through MOE. RESULTS: Ethanolic crude extracts of B. lyceum showed maximum zone of inhibition (32.5 mm) followed by methanolic extracts (30 mm), while ethanolic extracts of F. cretica showed zone of inhibition (29 mm) followed by methanolic extracts (27.5 mm). In silico screening predicted phytic acid as the most potent inhibitor followed by jehlumine, barbamine, oxyberberine and sindamine. CONCLUSION: The synergistic utilization of phytochemicals derived from B. lyceum may potentially provide protection against B. melitensis.


Assuntos
Berberis , Brucella melitensis , Brucelose , Antibacterianos/farmacologia , Humanos , Simulação de Acoplamento Molecular
18.
J Food Sci Technol ; 57(10): 3647-3658, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32903859

RESUMO

Application of hydrocolloid based edible coatings is widely investigated as a promising means to retain quality and to extend the shelf life of food products. Present investigation was aimed to analyze influence of treatments, with different concentrations of lemon extract (0, 5, 10 and 15)% and coating with (0 and 5)% soy protein isolate (SPI), on fresh-cut melons. After the treatments, the samples were packed in polypropylene containers and kept at 4 °C for quality and shelf life analyses. The study involved 8 combinations of melon samples which were monitored in triplicate on specific days for different quality parameters including headspace gases, physicochemical, sensory and microbiological changes over the storage period. Lowest weight loss was indicated by samples treated with both lemon extract and soy protein isolate. When compared to control, coated samples indicated 4.36 log CFU/g lesser total plate count, and 2.39 log CFU/g lesser yeast and mold count at the completion of storage. Treatments showed effectiveness to retain vitamin C of melon samples. Total soluble solids, pH and titratable acidity varied remarkably through the storage life. Significant differences were observed in sensory attributes of control and coated samples. Chroma and color change (ΔE) values also reflected the potential of soy protein isolate coating to protect foods. Overall, the results suggested that lemon extract and soy protein isolate can help in retaining quality and extending the shelf life of fresh-cut melon.

19.
PLoS One ; 15(6): e0234992, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32603382

RESUMO

Renewable energy resources connected to a single utility grid system require highly nonlinear control algorithms to maintain efficient operation concerning power output and stability under varying operating conditions. This research work presents a comparative analysis of different adaptive Feedback Linearization (FBL) embedded Full Recurrent Adaptive NeuroFuzzy (FRANF) control schemes for maximum power point tracking (MPPT) of PV subsystem tied to a smart microgrid hybrid power system (SMG-HPS). The proposed schemes are differentiated based on structure and mathematical functions used in FRANF embedded in the FBL model. The comparative analysis is carried out based on efficiency and performance indexes obtained using the power error between the reference and the tracked power for three cases; a) step change in solar irradiation and temperature, b) partial shading condition (PSC), and c) daily field data. The proposed schemes offer enhanced convergence compared to existing techniques in terms of complexity and stability. The overall performance of all the proposed schemes is evaluated by a spider chart of multivariate comparable parameters. Adaptive PID is used for the comparison of results produced by proposed control schemes. The performance of Mexican hat wavelet-based FRANF embedded FBL is superior to the other proposed schemes as well as to aPID based MPPT scheme. However, all proposed schemes produce better results as compared to conventional MPPT control in all cases. Matlab/Simulink is used to carry out the simulations.


Assuntos
Algoritmos , Fontes de Energia Elétrica , Energia Solar , Simulação por Computador , Eletrodos , Retroalimentação , Modelos Lineares , Temperatura
20.
RSC Adv ; 10(70): 42983-42992, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-35514930

RESUMO

Dihydrofolate reductase (DHFR) inhibitors, as antibacterial agents, contain pyrimidine, pteridine, and azine moieties among many other scaffolds. Folic acid (FA), with a pteridine ring and amine group, was used as our focus scaffold, which was then conjugated with sulfonamides to develop new conjugates. The novel synthesized conjugates were characterized using infrared spectroscopy, and 1H and 13C nuclear magnetic resonance (NMR) spectral studies and consequently screened for antimicrobial activities against bacterial strains with ampicillin as a positive control. Compound DS2 has the highest zone of inhibition (36.6 mm) with a percentage activity index (%AI) value of 122.8% against S. aureus and a minimum inhibitory concentration (MIC) of 15.63 µg mL-1. DHFR enzyme inhibition was also evaluated using the synthesized conjugates through in vitro studies, and inhibition assays revealed that compound DS2 exhibited a 75.4 ± 0.12% (mean ± standard error of the mean (SEM)) inhibition, which is comparable with the standard DHFR inhibitor trimethoprim (74.6 ± 0.09%). The compounds attached to the unsubstituted aryl moiety of the sulfonamides revealed better inhibition against the bacterial strains as compared to the methyl substituted aryl sulfonamides. Molecular docking studies of the novel synthesized conjugates were also performed on the DHFR enzyme to identify the plausible binding modes to explore the binding mechanisms of these conjugates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA